

Musical Instrument Digital
Interface (MIDI)

The MIDI Protocol
MIDI Computer Interface

General MIDI
MIDI Message Data Format

Who Owns a MIDI File?
Updates to MIDI Specification 1.0

MIDI is a communications protocol that allows digital instruments to interact with each other and with
computers. MIDI has become the primary digital production tool for musicians since its invention in
1983. A MIDI file contains no sounds, just instructions describing the notes played in a performance
and related information.

A large percentage of professionals working in new media have a background in the field of music, and
many of them had their first creative experience with computers using MIDI. The protocol was initially
designed to control digital keyboards, but as soon as computers entered the studio, they were
connected to the MIDI chain. Then software became available for recording, printing, and editing
musical symbols, just as word processors and graphic design programs proliferated for working with
other media types.

Keyboard synthesizer technology made major advances and became very popular in the 1980s. New
methods of generating sounds were the focus of considerable research and development. The
synthesizer joined the world of widely used musical instruments. One desirable method of creating
sounds with synthesizers was to “layer,” or combine the timbres of more than one instrument. A small
group of synthesizer design technicians from different manufacturers met in 1983 to discuss a
communications protocol to control a number of synthesizers from one keyboard. They developed a
method of connecting two synthesizers from competing manufacturers with cables that allowed either
instrument to control the other. They called it the Musical Instrument Digital Interface, or MIDI.

The MIDI Protocol

Two synthesizers can communicate using MIDI in the same way that two computers can communicate
over modems. The data exchanged between MIDI devices describes the performance of musical notes.
MIDI information contains commands that instruct an instrument when to start and stop playing a
specific note. Additional information translates the velocity of a keystroke into the volume of a note.
MIDI information can be hardware-specific. It can tell a synthesizer to change sounds, which are
referred to as instruments, programs, patches, voices, or timbres. Master volume, modulation of
tones, and other types of data can be transmitted. MIDI information can start and stop a song, or
sequence of events, and identify a location within a song. Computers can edit and store information
that defines the sounds that reside in a synthesizer. A distinction may be made between a synthesizer
that uses oscillators to electronically create a sound and a sampler that plays back a looped recording
of a sound wave. Memory in samplers and sound cards holds a “wave table” of samples, containing
short recordings of live instrument sounds.

MIDI page 2 © Hansen Media, 2020

The basic unit of communication used in MIDI is the byte. Each MIDI command has its own particular
byte sequence. The first byte is the status byte, which tells the MIDI device what function to perform.
The status byte contains the MIDI channel that is being addressed. MIDI data can flow on 16 different
channels simultaneously. Depending on the mode of reception and the channel to which a MIDI unit is
set to receive, it will accept or ignore a status byte. The bytes that follow the status byte address the
particular channel indicated by the status byte until another status byte is received.

The status byte sends commands such as Note On, Note Off, and Patch Change. Depending on the
status byte, a number of different byte patterns will follow. The Note On status byte tells the MIDI
device to play a note. This status byte requires a note-number byte to identify the note and a velocity
byte to define the volume. These bytes are required to complete the Note On transmission.

A separate Note Off command is sent to stop the note, which is not part of the Note On command. This
command also requires the same two additional bytes as the Note On byte.

Another example of a status byte is the Patch Change byte. The additional byte required by this
command is the number of the new patch or voice on the synthesizer. It is important to select the
desired channel when sending a Patch Change command. Patch Change data is different on every
synthesizer. The International MIDI Association (IMA) has set standards, and each manufacturer has an
ID number.

The SysEx status byte, which requires at least three additional bytes, can perform a variety of
functions. The first additional byte is the manufacturer’s ID number, the second is a data format byte,
and the third is an end of transmission (EOX) byte.

IN, OUT, and THRU

There are three five-pin ports on a typical MIDI unit for connecting a MIDI interface: IN, OUT, and
THRU. The IN port accepts MIDI data that comes to the unit from an external source. These are the
MIDI commands that control the instrument. The OUT port sends MIDI data from the unit, such as
Note On and Patch Change messages. The THRU port sends an exact copy of the data received at the
IN port. There is no change made to the data; however, a brief delay occurs in transmission.

Only three of the five conductors in a MIDI cable are
used. The cable is terminated on both ends with a
Deutsche Industrie Norm (DIN) plug. Data passes
through the cable on pins 1 and 3, and pin 2 is shielded
and connected to a common ground. Pins 4 and 5 are
not used. A MIDI cable is specially grounded and
shielded for efficient data transmission. The length of
the cable is limited. The IMA specification allows a
maximum cable length of 50 feet. The total length of a
MIDI chain is unlimited, as long as no link is longer than
50 feet. Commercially available cables usually range
from five to ten feet in length.

Figure 1—MIDI cable with connectors showing pin-out

MIDI page 3 © Hansen Media, 2020

MIDI Chains and Loops

A MIDI chain is a series of one-way connections between MIDI equipment. The basic link is a
connection between two devices. The MIDI OUT port of one device is connected to the MIDI IN port of
the other. A key pressed on the first unit causes both units to sound. A key press on the second unit
causes only it to sound. Several instruments may be chained together with a series of one-way links. In
this type of setup, the OUT of the first unit is connected to the IN of the second, and the THRU of the
second is connected to the IN of a third. If all units are set to receive on the same channel, pressing a
key on the first one will cause all units to sound. Pressing a key on any of the other units will make a
sound only on that device.

A MIDI loop is a MIDI chain configured for two-way transmission. A single element loop is made of two
interconnecting links. The OUT port of the first unit is connected to the IN port of the second, and the
OUT port of the second is connected to the IN port of the first. A key pressed on either unit will cause
both units to sound, provided they are set to receive on the same channel. A feedback loop does not
occur because data going into the second unit from the first is not sent from the OUT port back to the
first unit. This is a configuration with two one-way links, not a multilink chain.

MIDI Computer Interface

A special hardware interface is required to connect a computer to a MIDI device because the MIDI data
transmission rate is 31.5 Kbps. This data rate is different from any other computer interface rate. Apple
Computer and Commodore were the first companies to provide MIDI interface hardware. Roland
Corporation later developed an interface for IBM-compatible computers, the MPU-401. Atari designed
the ST series computer with MIDI ports built in. A wide range of interfaces is available for all types of
systems. Some come with software to handle an entire MIDI setup and route signals on different
channels to different
devices in the chain. Mark
of the Unicorn and Opcode
make professional quality
interfaces that generate
their own time code for
synchronization. Interfaces
are available that connect
through either the parallel
port or a USB port on the
computer.

Figure 2—Diagram of MIDI
setup with synth, interface,
CPU, cables, etc.

MIDI page 4 © Hansen Media, 2020

Software Applications

An abundance of software applications available serving a variety of functions using the MIDI interface.
One of the most widely used is the sequencer, which turns a computer into a multitrack recording
studio for MIDI tracks. Sequencers allow the computer to record, store, edit, and replay MIDI data. The
data can be saved in the Standard MIDI File (SMF) format as a song and realized by any sound card or
synthesizer. There are thousands of MIDI files free for downloading on the World Wide Web. Most
sequencers provide extensive editing capabilities as well as synchronization using MIDI Time Code
(MTC) or SMPTE Time Code. In recent years, the sequencer has been endowed with multitrack audio
recording functions. These programs allow the user to mix and edit live recorded tracks with MIDI
tracks in a virtual studio environment, known as a Digital Audio Workstation (DAW). Some of the more
popular applications are ProTools from Avid, Digital Performer from MOTU, Cubase from Steinberg,
Logic Pro from Apple, Studio One from Presonus, and Ableton Live.

Figure 3—Screen from Cubase

Music notation programs are another popular category of MIDI applications. They display MIDI data as
a musical score on the monitor, which can be edited and printed. Notes on the staff can be entered
with or without a MIDI interface or keyboard. Most of the music that is composed and published today
is rendered in this way. Some of the commonly used notation programs are Finale from Coda, Sibelius

MIDI page 5 © Hansen Media, 2020

from Avid, Dorico from Steinberg, Notion from Presonus, and the free open source program
MuseScore.

Computer-based sample editors and librarians are often used to develop sounds that may be
transferred to an instrument after they are edited. Patch librarians allow banks of sounds to be edited,
stored on disk, and moved between the computer and the synthesizer via MIDI.

Computers in MIDI Chains

A computer functions in the same way as any other unit in a MIDI chain or loop. Most interfaces have
the standard three ports: IN, OUT, and THRU. A computer can serve as a MIDI data driver and supply
the MIDI data for the rest of the chain. It can also receive and record MIDI data from other devices.

If the device receiving data from the computer is multitimbral, meaning that it can allocate a different
sound to each MIDI channel, data sent on all 16 MIDI channels simultaneously creates an electronic
orchestra. A computer-controlled MIDI chain is often used to emulate a recording studio. Scratch
tracks for film scores are typically done in this environment.

General MIDI

Compared to audio files, MIDI files are extremely small in size. This is a big advantage when
transferring MIDI files over a network like the web. A music track can be embedded in a web page and
begin playing after a very brief download. Sound card manufacturers have adopted a specification
called “General MIDI” (GM). This standard describes a set of 128 instrument samples that appear in a
specific order. The disadvantage for GM files is that the composer has little control over how the MIDI
file will sound on playback because the file does not contain that actual sample that is played, just the
name of the instrument on each channel.

General MIDI is really just a minor qualification to the MIDI specification that assigns a particular
instrumental sound to each MIDI program number, so that an individual musical part plays back on the
type of instrument for which it was intended. A well-designed MIDI file includes a Program Change
message at the beginning that tells the playback device to switch to the appropriate set of instruments
(programs, voices, or patches). Almost all sound cards support General MIDI, but the quality of the
sound depends on the quality of the samples stored in the sound card (wave table) and on the
speakers used to realize the sounds.

Program number 1 on all GM sound modules is an Acoustic Grand Piano. Patch number 25 is a Nylon
String Guitar. The programs are arranged in 16 families of instruments, with each family containing
eight instruments. For example, the reed family includes the Saxophone, Oboe, and Clarinet programs.
The program number assigned to each instrument in General MIDI is shown in the table below.

A GM sound module that is multitimbral can play MIDI messages on all 16 channels simultaneously,
with a different program sounding for each channel. All programs should sound an A440 pitch when
they receive the MIDI note number 69.

MIDI page 6 © Hansen Media, 2020

The Drum Part is sent and received on MIDI channel 10. Each of the MIDI notes triggers a different
drum sound on the keyboard. The assignment of drum sounds to MIDI note numbers is also shown in
the table below.

The GM standard allows for Program Change messages in a MIDI song file, which applies the correct
instrumentation automatically. The specification requires that a GM module be able to respond to the
Pitch and Modulation controllers on a synthesizer and to play 24 notes simultaneously with dynamic
voice allocation between the 16 channels. This means that the first note played is replaced by the 25th
note if more than 24 notes are held at the same time.

The GM specification spells out some global settings. A module should respond to velocity data to
control the volume of a note. The pitch wheel bend range should default to +/- 2 semitones. The
module also should respond to Channel Pressure as well. It should respond to numbered MIDI
controller messages for Modulation (1), Channel Volume (7), Pan (10), Expression (11), Sustain (64),
Reset All Controllers (121), and All Notes Off (123). Channel Volume should default to 90, with all other
controllers and effects off and the pitch wheel offset at 0. The module should respond to Registered
Parameter Numbers that control Pitch Wheel Bend Range (0), Fine Tuning (1), and Coarse Tuning (2).
Initial tuning should be the standard A440 reference. A MIDI System Exclusive message can be used to
turn a module’s General MIDI mode on or off.

In the accompanying tables, “Prog#” refers to the MIDI Program Change number that causes the
instrument to be selected. These decimal numbers are shown on a module’s display or in a sequencer’s
Event List. MIDI modules count the first Patch as 0, not 1. The value sent in the Program Change
message is actually one less than the program number from the list. A GM module automatically adds
a digit when it generates the MIDI Program Change message.

MIDI page 7 © Hansen Media, 2020

Table of General MIDI Programs

This chart shows the names of all 128 GM instruments and the MIDI Program Change numbers used to
select those instruments.

MIDI page 8 © Hansen Media, 2020

MIDI Message Data Format

This chart shows the drum sound assigned to each
MIDI note number. Typically, Channel 10 is the
default channel for a set of drums.

In the standard MIDI protocol one device is the
“transmitter” and another is the “receiver.”
Messages include “status” bytes and “data” bytes.
This arrangement is similar to common computer
networking protocols. Unfortunately, there is no
provision for handshaking between connected
units in the MIDI protocol.

Status bytes and data bytes are easily
distinguished. In all status bytes, bit 7 is a 1. All
data bytes must contain a 0 in bit 7 and lie in the
range between 0 and 127.MIDI applies a logical
channel concept. There are 16 logical channels,
encoded into bits 0 through 3 of the status bytes of
messages for which a channel number is
significant.

Voice Messages

In messages with channel numbers, the status byte
determines the number of data bytes for a single
message. The specification divides these into
“voice” and “mode” messages. The mode messages
are for control of the logical channels, and the control codes are added onto the data bytes for the
parameter message. The voice messages are as follows:

Status Byte Data Bytes

Note On 2 each; 1 byte pitch, followed by 1 byte velocity
Note Off 2 each; 1 byte pitch, followed by 1 byte velocity
Key Pressure 2 each; 1 byte pitch, 1 byte pressure (after-touch)
Parameter 2 each; 1 byte parameter number, 1 byte setting
Program 1 byte; program selection
Channel Pressure 1 byte; channel pressure (after-touch)
Pitch Wheel 2 bytes; a 14-bit value, least significant 7 bits first

For all of these messages, a convention called the “running status byte” may be used. If the transmitter
wishes to send another message of the same type on the same channel under the same status byte,
the status byte need not be resent.

MIDI page 9 © Hansen Media, 2020

A Note On message with a velocity of zero is synonymous with a Note Off message. Combined with the
previous feature, this allows long strings of notes to be sent without repeating status bytes. The “zero
velocity Note On” feature is frequently used. The pitch bytes of notes correspond to the half steps on a
keyboard, with middle C = 60.

The velocity bytes for velocity sensing keyboards represent a logarithmic scale. Non-velocity sensing
devices send a velocity of 64. The pitch wheel value is an absolute setting. The receiver determines the
increments. The default value corresponds to a centered pitch wheel (unmodified notes).

Parameter messages are used to set controller dials, the purpose of which is left to the given device,
except as noted below. The first data bytes correspond to the following controllers:

Data Byte Parameter Governed

0-31 Continuous controllers 0–31, most significant byte
32-63 Continuous controllers 0–31, least significant byte
64-95 On/off switches
96–121 Unspecified, reserved for future
122–127 The “channel mode” messages

The second data byte contains the seven-bit setting for the controller. The switches have data byte 0
set to OFF, 127 set to ON, with 1 through 126 undefined. If a controller only needs seven bits of
resolution, it uses the most significant byte. If both are needed, the order is specified as most
significant followed by least significant. With a 14-bit controller, it is legal to send only the least
significant byte if the most significant doesn’t need to be changed. Controller number 1 is standardized
to be the modulation wheel.

MIDI Mode Messages

These messages begin with status bytes, followed by data bytes 122 through 127. The data bytes
function as further data for a group of messages that control the combination of voices and channels
to be accepted by a receiver. There is an implicit “basic” channel over which a given device is to receive
these messages. The receiver ignores mode messages over any other channels, no matter what mode
they might be in. The basic channel for a given device may be fixed or set in some manner outside the
scope of the MIDI standard.

The meaning of the values 122 through 127 is as follows:

First Data Byte Second Data Byte

122 Local control 0 = local control off, 127 = on
123 All notes off 0
124 Omni mode off 0
125 Omni mode on 0
126 Mono mode. The number of monophonic channels
127 Poly mode 0
Note: 124 through 127 also turn all notes off.

MIDI page 10 © Hansen Media, 2020

Local control determines whether notes played on an instrument’s keyboard are sounded on the
instrument or not. With local control off, the host is able to read input data if desired and to send
notes to another instrument.

The mode setting messages control what channels and how many voices the receiver recognizes. There
is always a basic channel. “Omni” refers to the ability to receive voice messages on all channels.
“Mono” and “Poly” refer to whether multiple voices are allowed to sound at once. Unfortunately, the
omni on/off state and the mono/poly state interact with each other. There are four possible settings,
called “modes,” with given numbers in the specification:

Mode 1 Omni on/poly—Voice messages are received on all channels and assigned
polyphonically. Any notes received are played, up to the maximum capacity.

Mode 2 Omni on/mono—A monophonic instrument will receive single notes to play in one voice
on all channels.

Mode 3 Omni off/poly—A polyphonic instrument will receive voice messages on only the basic
channel.

Mode 4 Omni off/mono—The “mono” part is a misnomer. To operate in this mode, a receiver is
supposed to receive one voice per channel. The number of channels recognized is given
by the second data byte, or the maximum number of possible voices if this byte is 0. The
set of channels thus defined is a sequential set, starting with the basic channel.

A receiver may ignore any mode that it cannot honor or switch to an alternate mode (typically mode
1). Receivers are supposed to default to mode 1 when they power up. The original 1.0 specification
states that power-up conditions are supposed to place a receiver in a state where it will only respond
to Note On/Note Off messages, requiring a setting of some sort to enable the other message types.
(Current manufacturers default to “Multi” mode for startup, which is similar to Omni on/poly for
multitimbral modules.)

System Messages

In system messages, the status bytes and data bytes are used as follows:

Message Purpose Data Bytes

System Exclusive Variable length
Song Position 2 bytes; a 14-bit value, least significant byte first
Song Select 1 byte; a song number
Tune Request 0
EOX (terminator) 0

Song Position and Song Select are for controlling sequencers. The Song Position is measured in beats,
which count every six MIDI clock pulses. These messages determine what is to be played on receipt of
a start real-time message. The Tune Request tells analog synthesizers to tune their oscillators.

The System Exclusive message is intended for manufacturers to insert any specific messages that apply
to their own product. The following data bytes lie in the range of 0 to 127. The System Exclusive is to

MIDI page 11 © Hansen Media, 2020

be terminated by the EOX byte. The first data byte is to be a manufacturer’s ID, assigned by the MIDI
standards committee. The terminator byte is optional. A System Exclusive may also be terminated by
the status byte of the next message.

Common MIDI Manufacturer ID Numbers

“American Group”

1 Sequential Circuits (originator of spec)
4 Moog
5 Passport Designs
6 Lexicon
7 Kurzweill
8 Fender
10 Oberheim
11 Apple Computers
15 JL Cooper
18 Emu Systems
21 Orban
31 Voce

“European Group”

24 Hohner
29 PPG
39 Soundcraft

“Japanese Group”

40 Kawai
41 Roland
42 Korg
43 Yamaha
44 Casio

Real-time Messages

These messages are called “real-time” messages because they may be sent anytime anywhere. This
includes between data bytes of other messages. A receiver is supposed to be able to receive and
process (or ignore) these messages and resume collection of the remaining data bytes for the message
that was in progress. Real-time messages do not affect any running status byte in effect.

MIDI page 12 © Hansen Media, 2020

All of these messages are followed by no data bytes to prevent them from being interrupted. The real-
time messages are as follows:

· Timing Clock
· Start
· Continue
· Stop
· Active Sensing
· System Reset

The Timing Clock message is sent at the rate of 24 clocks per quarter note and is used to synchronize
devices, particularly drum machines. Start, Continue, and Stop are for the control of sequencers and
drum machines. The Continue message causes a device to pick up at the next clock mark.

The Active Sensing byte is to be sent once at least every 300 milliseconds, if it is used. Its purpose is to
implement a time-out mechanism for a receiver to revert to a default state. A receiver is to operate
normally until it receives one, activating the time-out mechanism from the receipt of the first Active
Sensing byte.

The System Reset initializes to power-up conditions. It should be used sparingly and never sent
automatically on power up.

Who Owns a MIDI File?

As with any performance of a musical composition, the composer controls rights to the content and
the performer controls rights to a particular performance of the work. Although a piece may be in the
public domain, the file is still the property of the person who created it. It is legal to use a MIDI song on
your web site as background music, providing the tune is in the public domain or permission has been
secured from the copyright owner. Permission should also be secured from the creator of the MIDI file
itself since the creation is akin to a performance. There are no restrictions on MIDI files based on public
domain material other than those claimed by the creator of the file.

Updates to MIDI specification 1.0

Until 2020, the original MIDI specification changed very little, although some of the initial status bytes
were not originally defined. The architecture of MIDI did not allow for expansion without a complete
redesign of the system. Any new design would need to be backwards- compatible and operate with
legacy MIDI hardware. The only major enhancement to General MIDI was the capacity to send sample
data along with a Standard MIDI File as a downloadable sound (DLS). Not all sound cards or modules
were equipped to handle this information. Below is a diagram from the MMA showing the effect of
Compatibility Inquiry made in 2020, which is at the heart of MIDI 2.0.

MIDI page 13 © Hansen Media, 2020

MIDI 2.0 advances the specification, while retaining backward compatibility with MIDI 1.0 gear and
software already in use. The advances in MIDI 2.0 are explained below.

MIDI 2.0 Allows Two-way MIDI Communication

MIDI 1.0 messages went in one direction: from a transmitter to a receiver. MIDI 2.0 is bi-directional
and changes MIDI communication from a monologue to a dialog. For example, with the new MIDI-CI
(Capability Inquiry) messages, MIDI 2.0 devices can talk to each other, and auto-configure themselves
to work together. They can also exchange information on functionality, which is key to backward
compatibility—MIDI 2.0 gear can find out if a device supports MIDI 2.0, and then simply communicate
using MIDI 1.0 if it does not.

Higher Resolution, More Controllers and Better Timing

To deliver a higher level of nuanced musical and artistic expressiveness, MIDI 2.0 re-imagines the role
of performance controllers, the aspect of MIDI that translates human performance gestures to data
computers can understand. Controllers are now easier to use, and there are more of them: over 32,000
controllers, including controls for individual notes. Enhanced, 32-bit resolution gives controls a smooth,

MIDI page 14 © Hansen Media, 2020

continuous, "analog" feel. New Note-On options were added for articulation control and precise note
pitch. In addition, dynamic response (velocity) was upgraded. Major timing improvements in MIDI 2.0
can apply to MIDI 1.0 devices. Some MIDI 1.0 gear can even retrofit certain MIDI 2.0 features.

Profile Configuration

MIDI gear can now have Profiles able to dynamically configure a device for a particular use case. If a
control surface queries a device with a "mixer" Profile, then the controls will map to faders, panpots,
and other mixer parameters. But with a "drawbar organ" Profile, that same control surface can map its
controls automatically to virtual drawbars and other keyboard parameters—or map to dimmers if the
profile is a lighting controller. This saves setup time, improves workflow, and eliminates manual
programming.

Property Exchange

While Profiles set up an entire device, Property Exchange messages provide specific, detailed
information sharing. These messages can discover, retrieve, and set many properties like preset
names, individual parameter settings, and unique functionalities. For example, recording software
could display data about a synthesizer onscreen, effectively bringing hardware synths up to the same
level of recallability as their software counterparts.

Built for the Future

MIDI 2.0 is the result of a global, decade-long development effort. Unlike MIDI 1.0, which was initially
tied to a specific hardware implementation, a new Universal MIDI Packet format makes it easy to
implement MIDI 2.0 on any digital transport (like USB or Ethernet). To enable future applications that
we cannot envision today, there's ample space reserved for new MIDI messages.

Further development of the MIDI specification, as well as safeguards to ensure future compatibility
and growth, will continue to be managed by the MIDI Manufacturers Association working in
cooperation with the Association of Musical Electronics Industry (AMEI), the Japanese trade
association that oversees the MIDI specification in Japan.

MIDI is intended to continue to serve musicians, DJs, producers, educators, artists, and anyone who
creates, performs, learns, and shares music and artistic works in the decades to come.

Portions of this content are copyrighted by the MMA and used with permission.

